惠州市五年级数学知识竞赛题目与答案 - 五年级数学竞赛考试题型

时间:2019-01-11分类:数学

惠州市五年级数学知识竞赛题目与答案

惠州市五年级数学竞赛试题

1、有数组{1,2,3,4},{2,4,6,8},{3,6,9,12},……那么第100个数组的四个数的和是( )。

2、一个两位数除351,余数是21,这个两位数最小是( )。

3、2008除以7的余数是( )。

4、在1、2、3……499、500中,数字2在一共出现了( )次。

5、甲乙丙三人到银行储蓄,如果甲给乙200元,则甲乙钱数同样多,如果乙给丙150元,丙就比乙多300元,甲和乙哪个人存款多?( ),多存( )元。

6、食堂有大米和面粉共351袋,如果大米增加20袋,面粉减少50袋,那么大米的袋数比面粉的袋数的3倍还多1袋,原来大米有( )袋,面粉有( )袋。

7、279是甲乙丙丁四个数的和,如果甲减少2,乙增加2,丙除以2,丁乘以2后,则四个数都相等,那么甲是( ),乙是( ),丙是( ),丁是( )。

8、兄弟俩比年龄,哥哥说:“当我是你今年岁数的那一年,你刚5岁。”弟弟说:“当我长到你今年的岁数时,你就17岁了。”哥哥今年( )岁,弟弟今年( )岁。

9、甲对乙说:“我的年龄是你的3倍。”乙对甲说:“我5年后的年龄和你11年前的年龄一样。”甲今年( )岁,乙今年( )岁。

10、A、B两地相距21千米,上午9时甲、乙分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,中午12时他们第二次相遇。此时甲走的路程比乙走的路程多9千米。甲每小时走( )千米。

11、一只汽船所带的燃料,最多用6小时,去时顺流每小时行15千米,回来是逆流每小时行12千米,这只汽船最多行出 ( )千米就需往回开。

12、一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时5千米 ,这条船在静水中每小时行( )千米。

13、一座铁路桥全长1200米,一列火车开过大桥需要75秒,火车开过路旁的电线杆只需15秒,那么火车全长是( )米。

14、某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要( )秒。

15、蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白天爬到井口,这口井至少深( )厘米。

16、周老师给学是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有( )个同学,( )个练习本。

17、王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行( )千米。

18、松鼠妈妈采松子,晴天每天可采24个,雨天每天可采16个,他一连几天一共采了168个松子,平均每天采21个,这几天当中一共有( )天晴天。

19、用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,那么每张纸条长( )厘米。

20、有一牧区长满牧草,牧草每天匀速生长。这个牧区的草可供27头牛吃6周,或供23头牛吃9周,那么可供21头牛吃( )周。

21、20个队参加乒乓球团体赛,如果进行循环赛,需要比赛( )场。

22、“IMO”是国际数学奥林匹克竞赛的缩写,把这三个字母写成三种不同的颜色,现有五种不同的颜色,按上述要求可以写出( )中不同颜色搭配的“IMO”。

23、在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人,那么甲班共有( )人。

24、一个口袋里有四种不同颜色的小球,每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸()次

人教版五年级下册数学易错题型

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米?  

解:AB距离=(4.5×5)/(5/11)=49.5千米    

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货 车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

 解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米   3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点 相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7  那么4小时就是行全程的4/7  所以乙行一周用的时间=4/(4/7)=7小时    

4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当 甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8  那么甲乙的路程比=7/8:7/10=5:4  所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米    

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇  (225-15)/ (1-3/7)=210/(4/7)=367.5千米    

6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?  

解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的度=1/20  甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12  那么再有(11/20)/(1/12)=6.6分钟相遇

二、我会选择。

1、算一个上底是acm,下底是bcm,高是3cm的梯形面积,应该使用()公式。

A、S=ab     B、S=3a÷2    C、S=3(a+b)÷2       D、S=ab÷2

2、在60=12×5中,12和5是60的( )。

  A、倍数      B、偶数       C、质数       D、因数

三、数学迷宫。

1、最小的自然数是(),最小的奇数是(),最小的质数是(),最小的合数是()。

2、一个三角形的面积是24cm ,与它等底等高的平行四边形的面积是( )cm 。

3、 的分数单位是(),有()个这样的单位,再去掉()个分数单位就是3。

4、把5米长的绳子平均分成8段,每段长(),每段占全长的(),每段是5米的()。 

四、神机妙算。

找出下面各组数的最大公因数和最小公倍数。

28和56                56和18                  84和98  

 

五、解决问题:

1.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶。然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?

2.三(2)班有60名同学去栽树,平均每人栽4棵,恰好栽完。随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学?

3.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人? 

4.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人? 

5.甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数。 

6.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分? 

7.如果4个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁? 

8.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第3个数是多少? 

9. 梓涵参加了三次数学竞赛,平均分是84分,已知前两次平均分是82分,求他的三次得了多少分? 

10. 梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分。梓涵数学考了多少分? 

11. 如果3个人的平均年龄是22岁,且没有小于18岁的,那么年龄最大的可能是多少岁? 12. . 如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁? 

13. 在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米? 

14. 一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页? 

15. 梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完。这个同学平均每天读多少页? 

16.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分? 

 

应用题

1、奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元? 

2、3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克? 

3、张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元? 

4、粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克? 

5、一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克? 

6、一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克? 

7、一瓶酒连瓶重80克,喝了一半的酒后,连瓶还重50克,原来有酒多少克?瓶重多少克? 

8、一瓶汽水连瓶重45克,用去一半的汽水后,连瓶还重25克,原来有汽水多少克?瓶重多少克? 

9、有6箱鸡蛋,每箱鸡蛋个数相等,如果从每箱中拿出50个,那么6箱剩下的鸡蛋个数正好和原来5箱的个数相等,原来每箱鸡蛋多少个? 

10、有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的个数相等,原来每筐苹果多少个? 

11、有5箱饼干,每箱鸡蛋重量相等,如果从每箱中拿出40克,那么5箱剩下的总克数正好和原来3箱的克数相等,原来每箱饼干多少克? 4、一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人? 

12、韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字? 

13、张梓涵看一本书,计划每天看15页,实际每天比计划多看3页,结果提前两天完成任务。这本书有多少页? 

14、修一条路,计划每天修60米,实际每天比计划多修8米,结果提前4天完成任务。这条路多少米? 

15、陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤? 

16、琦涵有10张画片,郑洁有4 张画片。琦涵给郑洁多少张画片后,她俩的画片张数相等? 

17、红盒子里有52个玻璃球,蓝盒子里有34个玻璃球,每次从多的盒子里取出3个放到少的盒子里,拿几次才能使两个盒子里的玻璃球的个数相等? 

18、大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等? 

19、书架的上层有25本书,下层有27本书,爸爸又买回10本书,怎样放才能使书架上、下两层的书同样多? 四年级应用题2 

20、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台? 

21、某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度? 

22、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时? 

23、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱。由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本? 

24、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工? 

25、锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天? 

26、学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋。问鸡蛋价格下调后每千克是多少元? 

27、18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完? 

28、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨? 10、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完? 

29、 3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克? 

30、一个机械厂4台机床5小时可以生产零件720个。照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时? 

31、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工? 32、九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天? 

33、扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天? 

34、师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。徒弟每小时加工多少个? 

35、甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时。泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地? 

36、旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务? 

37、舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆? 

38、德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题? 

 

和差问题 

一、1、 学校有排球、足球共50个,排球比足球多4个,排球、足球各多少个? 

2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人? 

3、甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米? 

4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁? 

5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。小敏和他爸爸的年龄各是多少岁? 

6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。小兰语文、数学各得多少分? 

 

二、1、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本? 

2、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。原来每桶各有水多少千克? 

3、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。甲、乙两个仓库各存大米多少吨? 

4、甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元? 

 

三、1、甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨? 

2、甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨? 

3、甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克? 

4、甲乙两个学校共有学生2008人,如果从甲校调走20人,乙校调走15人,甲校比乙校还多5人,两校原各有学生多少人? 

5、学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克? 

6、《红楼梦》分上、中、下三册,全书共108元。上册比中册贵11元,下册比中册便宜5元。上、中、下三册各是多少元? 

7、四个人年龄之和是77岁,最小的10岁,他和最大的人的年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁? 

8、小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米? 

9、曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克? 

10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵? 

 

和倍问题 

1、小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍,小红和妈妈各是多少岁? 

2、甲乙两数和是150,甲数除以乙数的商是4,甲乙两数各是多少? 

3、一块长方形木板,长是宽的2倍,周长54厘米,这块长方形木块的面积是多少? 

4、一筐苹果、一筐梨和一筐葡萄共重42千克,知道苹果重量是葡萄的2倍,梨的重量是葡萄的3倍,苹果、梨、葡萄各是多少千克? 

5、三年级三个班共植树200棵,二班植树棵数是一班的2倍,三班植树棵数和二班一样多,三个班各植树多少棵? 

6、有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那么甲堆、乙堆、丙堆煤各重多少千克? 

7、有三队修路队合修一条长240千米的路,甲队修的是乙队的3倍,丙队修的是甲队的2倍,那么甲队、乙队、丙队各修多少千米? 

8、张老师买回篮球足球共83个球,其中篮球比足球的2倍多5个,这两种球各有多少个? 9、张老师买回篮球足球排球共83个球,其中篮球比足球的2倍多5个,排球比足球的2倍少7个,这三种球各有多少个? 

10、张老师买回篮球足球排球共83个球,其中篮球是足球的2倍,足球比排球多5个,这三种球各有多少个? 

11、小华有笔30枝,小明有笔15只,问小明给几枝给小华后,小华的枝数是小明的8倍? 12、小明有书18本,小芳有书8本,现在又买来16本,怎样分配才能使小明的本数是小芳的2倍? 

13、甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍? 

14、一个除式,商是18,余数是4,被除数、除数、商、余数的和是292,除数与被除数各是多少? 

 

差倍问题

1、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只? 

2、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。大小书架原来各有多少本? 

3、老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼? 

4、张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个? 

5、副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克? 

6、张老师买回篮球足球排球,其中足球是篮球的3倍,足球比排球多7个,排球比篮球多11个。这三种球各有多少个? 

7、梨比葡萄重2000千克,苹果重量是葡萄的2倍,苹果重量比梨多3000个,苹果、梨、葡萄各是多少千克? 

8、小明的存款数是小刚的3倍,现在小明取出380元,小刚取出110元,两人的存款数变得同样多。小明和小刚原来各存款多少元? 

9、甲仓存粮吨数是乙仓的3倍,如果甲仓中取出60吨,乙仓中运进80吨,甲、乙两个粮仓存粮吨数正好相等。甲、乙两个粮仓各存粮多少吨? 

10、甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中运进60吨,乙仓中运进260吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨? 11、小张有36本课外书,小徐有24本课外书,两人捐出同样多的本数后,小张剩下的本数是小徐剩下本数的3倍,两人各捐出多少本书? 

12、师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个,这时,徒弟剩下的个数是师傅的3倍。师徒要加工多少个零件? 

 

用假设法解题 

兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数) 

鸡数=鸡兔总数-兔数 (假设鸡,先求出兔) 

或:鸡数=(每只兔脚数×鸡兔总数-总脚数)÷(每只兔子脚数-每只鸡脚数) 

兔数=鸡兔总数-鸡数 (假设兔,先求出鸡) 

 

1、鸡兔共30只,共有脚70只,鸡兔各有多少只? 

2、鸡兔共20只,共有脚50只,鸡兔各有多少只? 

3、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆? 

4、体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件? 

5、买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张? 

6、扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张? 

7、有2角,5角和1元人民币20张,共计12元,则1元有()张,5角有()张,2角有()张. 

8、一批水泥,用小车装载,要用20辆,用大车装载,只要12辆,每辆大车比小车多装4吨。这批水泥有多少吨? 

9、一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。这批水泥有多少吨? 

10、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱? 

11、某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题? 

12、九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题? 

13、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只? 

14、李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张? 

15、王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张? 

16、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种昆虫各几只? 

 

盈亏问题的关系式:

1、(盈+亏)÷两次分配的差=份数 

2、(大盈-小盈)÷两次分配的差=份数 

3、(大亏-小亏)÷两次分配的差=份数 

每次分的数量×份数+盈=总数量,

每次分的数量×份数-亏=总数量, 

解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。 

1、幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个? 

2、小明带了一些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?小明带了多少钱? 

3、一个小组去山坡植树,如果每人栽4棵,还剩12棵,如果每人栽8棵,则还缺4棵,这个小组有多少人?一共有多少棵树? 

4、一组学生去搬书,如果每人搬2本,还剩12本,如果每人搬4本,还缺6本,这组学生有几人?这批书有多少本? 

5、老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本? 

6、把一袋糖分给小朋友们,如果每人分4粒,则多出12粒,如果每人分6粒,则多出2粒,问有几个小朋友?有多少粒糖? 

7、妈妈买来一些苹果分给全家人,如果每人分6个,则多出了12个,如果每人分7个,则多出了6个,全家有几人?妈妈买回多少个苹果? 

8、某学校有一些学生住校,每间宿舍住8人,空出床位24张,如果每间宿舍住10人,则空出床位2张,学校共有几间宿舍?住宿学生有几人? 

9、学校派一些学生搬树苗,如果每人搬6棵,则差4棵,如果每人搬8棵,则差18棵,学校派了多少名学生?这批树苗有多少棵? 

10、自然课上,老师给学生发树叶,如果每人分5片树叶,则差3片树叶,如果每人分7片树叶,则差25片树叶,这节课有多少学生?老师一共带了多少树叶? 

11、数学兴趣小组同学做数学题,如果每人做6道题,则少4道,如果每人做8道题,则少16道,问有几个同学?一共有多少道数学题? 

12、学校排练节目,如果每行排8人,则有一行少2人,如果每行排9人,则有一行少7人,一共排了多少行?一共有多少人? 

13、三(1)班学生去公园划船,如果每条船坐4人,则多出4人;如果每条船坐6人,则多出了4条船;公园里有多少条船?三(1)班有多少名学生? 

14、学校给新生分配宿舍,如果每间住8人,则少了2间房,如果每间住10人,则多出了2间房,一共有几间房分给新生?新生有多少人住宿? 

15、同学们去划船,如果每条船坐5人,则有10人没船坐,如果每条船多坐2人,则多出两条船,共有几条船?有多少个同学? 

16、小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则要早到4分钟,小明家到学校有多远? 

17、三年级学生练习册,如果每人发5册还剩下32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么三年级学生有多少人?练习册有多少本? 

18、小明买了一本《趣味数学》,他计划:如果每天做3题,则剩下16题,如果每天做5题,则最后一天只要做1题。那么这本书共有几道题?小明计划做几天? 

19、三(2)班同学去植树,如果每人植5棵,还有3棵没有人植,如果其中4人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么参加植树的有几名同学?共植树多少棵? 

20、小明从家到学校,出发时看看表,发现如果每分钟步行80米,他将迟到5分钟,如果先步行10分钟后,再改成骑车每分钟行200米,他就可以提前1分钟到校。问小明从家出发时离上学时间有多少分钟?

 

五年级数学期末考试一般会考到的题型麻烦帮我发一些

一、填空。(每空1分,共计24分)

1、小明原又20元钱,用掉x元后,还剩下( )元。

2、12和18的最大公因数是( );6和9的最小公倍数是( )。

3. 把3米长的绳子平均分成8段,每段长米,每段长是全长的。

4、小红在教室里的位置用数对表示是(5,4) ,她坐在第( )列第( )行。小丽在教室里的位置是第5列第3行,用数对表示是( , )。

5. 能同时被2、3和5整除最小的三位数( );能同时整除6和8的最大的数( )。

6、如果a÷b=8是(且a、b都不为0的自然数),他们的最大公因数是( ),最小公倍数是( )。

7、 (a是大于0的自然数),当a 时, 是真分数,当a 时, 是假分数,当a 时, 等于3。

8、 = =( )÷9=44÷( )

9、在括号里填上适当的分数。

35立方分米=( )立方米 53秒=( )时 25公顷=( )平方千米

10、在20的所有约数中,最大的一个是( ),在15的所有倍数中,最小的一个是( )。

11、有一个六个面上的数字分别是1、2、3、4、5、6的正方体骰子。掷一次

骰子,得到合数的可能性是 ,得到偶数的可能性是 。

二、认真判断。(5分)

1、方程一定是等式,等式却不一定是方程。………………………………( )

2、假分数都比1小。……………………………………………………( )

3、数对(4,3)和(3,4)表示的位置是一样的。…………………………( )

4、14和7的最大公因数是14。……………………… ………………( )

5、把一根电线分成4段,每段是米。……………………………………( )

三、慎重选择。(5分)

1、一张长24厘米,宽18厘米的长方形纸,要分成大小相等的小正方形,且没有剩余。最小可以分成( )。

A. 12个 B.15个 C. 9个 D.6个

2、是真分数,x的值有( )种可能。

A. 3 B. 4 C. 5 D. 6

3、五(3)班有28位男生,25位女生,男生占全班人数的( )。

A. B. C. D.

4、把4干克平均分成5份,每份是( )。

A. 千克 B. 总重量的 C. 千克 D. 总重量的

5、两个数的最大公因数是4,最小公倍数是24,这两个数不可能是( )。

A. 4和24 B. 8和12 C. 8和24

四、细心计算(40%)

1、写得数4%

6.3+7= 21.5+9.5= 2.5×0.4= 42.8-4.28=

1-0.01= 3.5÷0.5= 8.2÷0.01= 8.2×0.01=

2、解方程:12%

X-7.4=8 2X=3.6 X÷1.8=3.6 X+6.4=14.4

3、求下面各组数的最大公因数和最小公倍数。(9%)

10和9 14和42 26和39

4、递等式计算:9%

(2.44-1.8)÷0.4 2.9×1.4+2×0.16 30.8÷[14-(9.85+1.07)]

5. 根据题意列方程并解答。(6分)

① 7个X相加的和是10.5。

五、应用题:(27% 第1-3题每题5分,其余每题4分)

1、我国参加28届奥运会的男运动员138人,女运动员比男运动员的2倍少7人。男、女运动员一共多少人?

2、北京在2008年奥运会主办权中,共有105张有效票,北京获得56张。北京的得票占有效票的几分之几?

3、甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果4月25日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?

4、有一块布长8米,正好可以做12条同样大小的裤子。每条裤子用布几分之几米?每条裤子用这块布的几分之几?

5、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?

6. 两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?

期末测试卷 姓名___________ 得分:

一、在括号里填上你满意的答案。(20分)

1、八百三十五万九千零四写作( ),四舍五入到万位约是( )

2、1.75小时=( )小时( ) 7800平方米=( )平方千米

3、把4米长的铁丝平均分成5段,每段的长度是全长的( )( ) ,每段长( )千米。

4、分数单位是110 的最大真分数是( )。它至少再添上( )个这样的分数单位就成了最小的奇数。

5、甲乙两数的比是8:5,乙数是25,甲数是( )

6、在25 :X中,当X=( )时比值是1,当X=( )时,比无意义,当X=( )时,可与23 :2组成比例。

7、甲是乙的2倍,丙是甲的2倍,那么甲:乙:丙=( )

8、某工人生产200个零件,其中4个不合格,合格率是( )%

9、一件工作若完成它的512 用10小时,若完成它的23 用( )小时。

10、已知M、M两数的比是2:3,它们的最大公约数是16,那M=( )。

二、火眼金睛识对错。(6分)

1、含有未知数的式子叫做方程。( )

2、比3小的整数中有1和2。( )

3、915 不能化成有限小数。( )

4、因为45 <67 所以15 <17 。( )

5、最简整数比的比值一定是最简分数。( )

6、一幢7层楼每层的高度是相同的,小宁从底层走到三楼要用40秒,那么走到顶层需要140秒。

三、快乐A、B、C(6分)

1、一个数(零除外)除以19 ,这个数就( )。A、扩大9倍 B、缩小9倍 C、增加9倍

2、一种脱粒机34 小时脱粒910 吨,1小时脱粒的吨数( )910 吨.

A、大于 B、小于 C、等于 D、大于或等于

3、等边三角形是( )A、锐角三角形 B、直角三角形 C、钝角三角形

4、把第一筐苹果重量的15 给第二筐,这时两筐苹果重量相等,原来第一筐与第二筐重量的比是( ). A、4:5 B、5:4 C 5:3

5、把一个棱长4厘米的正方体,锯成棱长是1厘米的小正方体,可锯( )个。

A、4 B、8 C、16 D、32 E、64

6、一个圆柱和一个圆锥的体积相等,已知圆锥的底面积是圆柱底面积的2倍,那么圆柱的高是圆锥高的( )。A、12 B、23 C、2倍 D、3倍

四、小神算(23分)

1、口算(5分)

93+55+7+45= 476-299= 0.1×0.1×0.1= 8+5.2= 77×11-77= 0.12÷0.15=

15.24-1.6-8.4= 56 -(813 +56 )= 2740 ÷9= 8×5×0.01=

2、求未知数X(4分)

7X-434 =2.25 X - 14 X=6

3、脱式计算 能简则简(8分)

815 ×13+815 ×2 89 ÷[56 +(47 - 47 )-16 ] (48×47 +48×37 )×1.25

(1118 ×922 +13 )÷712

4列式计算(6分)

一个数的3倍与25 的差是60%,这个数是多少?

38 与16的积,加上5除59 ,和是多少?

五、实践与探索(15分)

1、 右图是一张长方形纸板,用它围作侧面,并分别配上不同的底面,做成长方体或圆柱体,接头处不计,计算所需要的数据(自己测量,保留整数)

(1) 如果给它配上一个底面,做成以BC为高的圆柱体,求这个无盖圆柱体的表面积。

(2) 如果给它配上一个正方形的底,作为以AB为高的长方体,求这个长方体的体积。

2、 几何操作题(单位:厘米)

在一个长方体中削去一个最大的圆柱体,求剩余部分的体积。

六、实践应用(30分)

1、 新兴机械厂扩展厂房,原计划投资400万元,实际投资360万元,节约了百分之几?

2、 一个筑路队铺一条公路,原计划每天铺1.6千米,30天铺完,实际每天比原计划多铺0.8千米,实际多少天完成?(用比例解)

3、 一个盛有水的圆柱形玻璃容器,它的底面半径6厘米,现将一石块放入容器内,这时水面上升4厘米。石块的体积是多少立方厘米?

4、 王华看一本课外读物,第一天看了这本书的20%,第二天看了剩下的30%,还有140页没有看完,这本课外读物共多少页?

5、小明到6千米远的西湖去玩,请根据下面折线统计图回答:

(1)小明在西湖玩了多少时间?

(2)如果从出发起一直走不休息,几点几分可达到西湖?

(3)求出返回时小明骑自行车的速度?

五年级数学第十册期末考试试卷

成绩:

一 、填空:20%

1. 2. 5小时=( )小时( )分 5060平方分米=( )平方米

2. 24的约数有( ),把24分解质因数是( )

3. 分数单位是 1/8的最大真分数是( ),最小假分数是( )。

4. 一个最简分数的分子是最小的质数,分母是合数,这个分数最大是( ),如果再加上( )个这样的分数单位,就得到1。

5. 把一个长、宽、高分别是5分米,3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是( )平方分米。

6. 用一根52厘米长的铁丝,恰好可以焊成一个长方体框架。框架长6厘米、宽4厘米、高( )厘米。

7. A=2×3×5,B=3×5×5,A和B的最大公约数是( ),最小公倍数是( )。

8. 正方体的棱长扩大3倍,它的表面积扩大( )倍,它的体积扩大( )倍。

9. 4/9与5/11比较,( )的分数单位大,( )的分数值大。

10. 两个数的最大公约数是8,最小公倍数是48,其中一个数16,另一个数是( )。

二 、选择题(将正确答案的序号填在括号内):20%

1. 下面式子中,是整除的式子是( )

① 4÷8=0.5 ② 39÷3=13 ③ 5. 2÷2. 6=2

2. 在2/3、3/20和7/28中,能化成有限小数的分数有( )

① 3个 ② 2个 ③ 1个

3. 两个质数相乘的积一定是( )

① 奇数 ② 偶数 ③ 合数

4 . A=5B(A 、B都是非零的自然数)下列说法不正确的是( )

① A 和B的最大公约数是A ② A 和B的最小公倍数是A

③ A能被B整除,A含有约数5

5. 在100克的水中加入10克盐,这时盐占盐水的( )

① 1/9 ② 1/10 ③ 1/11

6. 已知a>b,那么2/a与2/b比较( )

① 2/a> 2/b ②2/a < 2/b ③ 无法比较大小

7. 两个数的最大公约数是12,这两个数的公约数的个数有( )

① 2个 ② 4个 ③ 6个

8. 一个长方体被挖掉一小块(如图)下面说法完全正确的是( )

① 体积减少 ,表面积也减少

② 体积减少, 表面积增加

③ 体积减少, 表面积不变

9. 用大小相等的长方形纸,每张长12厘米,宽8厘米。要拼成一个正方形,最小需要这种长方形纸( )。

① 4张 ② 6张 ③ 8张

10、一根6米长的绳子,先截下1/2,再截下1/2米,这时还剩( )

① 5米 ② 5/2米 ③ 0米

三、计算题:28%

1. 求长方体的表面积和体积(单位:分米)4%

a=8 b=5 c=4

2. 脱式计算(能简算要简算)12%

6/7+2/15+1/7+ 13/15 19/21+5/7-3/14

2/3+5/9-2/3+5/9

8/9-(1/4-1/9)- 3/4

3. 求最下列每组数的最大公约数与最小公倍数 4%

24 和36

18、24和40(只求最小公倍数)

4. 文字题 6%

5/9与7/18的和,再减去1/2,结果是多少?

一个数减去7/15与7/30的差,结果是2/3,这个数是多少?(用方程解)

四、作图题 4%

请你用画阴影的方法表示1/2(至少5种)

五、应用题:30%

1. 一块地,其中1/5种玉米,1/6种青菜,其余种西瓜。种西瓜的面积占这块地的几分之几?

2. 某班男生24人,女生20人,男生人数是女生的多少倍?女生人数是男生人数的几分之几?

3. 学生参加环保行动。五年级清运垃圾3/5 吨,比六年级少清运1/8吨。五六年级共清运垃圾多少吨?

4. 一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。它的容积是多少升?

5. 一辆汽车,前3小时共行192千米,后2小时每小时行58千米,这辆汽车的平均速度是多少千米?