您好,欢迎来到 作业展!
手机访问
数学分为几类_数学

数学的内容十分广泛,它有许多分支.迄今,还没有一种公认的划分的原则.但就数学和现实生活的联系来说,大体分为两大类,即纯粹数学和应用数学.
1.纯粹数学
纯粹数学研究从客观世界中抽象出来的数学规律的内在联系,也可以说是研究数学本身的规律.它大体上分为三大类,即
研究空间形式的几何类,研究离散系统的代数类,研究连续现象的分析类
属于第一类的如微分几何、拓扑学.微分几何是研究光滑曲线、曲面等,它以数学分析、微分几何为研究工具.在力学和一些工程问题(如弹性壳结构、齿轮等方面)中有广泛的应用.拓扑学是研究几何图形在一对一的双方连续变换下不变的性质,这种性质称为“拓扑性质”.如画在橡皮膜上的图形当橡皮膜受到变形但不破裂或折叠时,曲线的闭合性、两曲线的相交性等都是保持不变的.
属于第二类的如数论、近世代数.数论是研究整数性质的一门学科.按研究方法的不同,大致可分为初等数论、代数数论、几何数论、解析数论等.近世代数是把代数学的对象由数扩大为向量、矩阵等,它研究更为一般的代数运算的规律和性质,它讨论群、环、向量空间等的性质和结构.近世代数有群论、环论、伽罗华理论等分支.它在分析数学、几何、物理学等学科中有广泛的应用.
属于第三类的如微分方程、函数论、泛涵分析.微分方程是含有未知函数的导数或偏导数的方程.如未知函数是一元函数,则称为常微分方程,如未知函数是多元函数,则称为偏微分方程.函数论是实函数论(研究实数范围上的实值函数)和复变函数(研究在复数平面上的函数性质)的总称.泛涵分析是综合运用函数论、几何学、代数学的观点来研究无限维向量空间(如函数空间)上的函数、算子和极限理论,它研究的不是单个函数,而是具有某种共同性质的函数集合.它在数学和物理中有广泛的应用.

  • 在数学里/是什么意思? 2017-10-01

    比如说:四分之三,我们写的时候就写成:3/4或者理解成3除以4,我们也这样写那个即是“分号”也是“除号”,其实都一个意思.

  • 初一上半年解方程应用题100道 2017-10-23

    1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a...

  • 数学基本思想有哪些? 2017-11-11

    高中数学基本数学思想 1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转...

Copyright © 2020作业展版权所有